1 Fig. 8 shows the line $y=1$ and the curve $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=\frac{(x-2)^{2}}{x}$. The curve touches the x-axis at $\mathrm{P}(2,0)$ and has another turning point at the point Q .

Fig. 8
(i) Show that $\mathrm{f}^{\prime}(x)=1-\frac{4}{x^{2}}$, and find $\mathrm{f}^{\prime \prime}(x)$.

Hence find the coordinates of Q and, using $\mathrm{f}^{\prime \prime}(x)$, verify that it is a maximum point.
(ii) Verify that the line $y=1$ meets the curve $y=\mathrm{f}(x)$ at the points with x-coordinates 1 and 4 . Hence find the exact area of the shaded region enclosed by the line and the curve.

The curve $y=\mathrm{f}(x)$ is now transformed by a translation with vector $\binom{-1}{-1}$. The resulting curve has equation $y=\mathrm{g}(x)$.
(iii) Show that $\mathrm{g}(x)=\frac{x^{2}-3 x}{x+1}$.
(iv) Without further calculation, write down the value of $\int_{0}^{3} g(x) d x$, justifying your answer.

2 Fig. 9 shows the curve $y=x \mathrm{e}^{-2 x}$ together with the straight line $y=m x$, where m is a constant, with $0<m<1$. The curve and the line meet at O and P . The dashed line is the tangent at P .

Fig. 9
(i) Show that the x-coordinate of P is $-\frac{1}{2} \ln m$.
(ii) Find, in terms of m, the gradient of the tangent to the curve at P .

You are given that OP and this tangent are equally inclined to the x-axis.
(iii) Show that $m=\mathrm{e}^{-2}$, and find the exact coordinates of P .
(iv) Find the exact area of the shaded region between the line OP and the curve.

3
(i) Use the substitution $u=1+x$ to show that

$$
\int_{0}^{1} \frac{x^{3}}{1+x} \mathrm{~d} x=\int_{a}^{b}\left(u^{2}-3 u+3-\frac{1}{u}\right) \mathrm{d} u
$$

where a and b are to be found.
Hence evaluate $\int_{0}^{1} \frac{x^{3}}{1+x} \mathrm{~d} x$, giving your answer in exact form.
Fig. 8 shows the curve $y=x^{2} \ln (1+x)$.

Fig. 8
(ii) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.

Verify that the origin is a stationary point of the curve.
(iii) Using integration by parts, and the result of part (i), find the exact area enclosed by the curve $y=x^{2} \ln (1+x)$, the x-axis and the line $x=1$.

